Siler.Rd
dsiler
gives the probability density function, psiler
the cumulative density function, qsiler
the quantile function, rsiler
random draws, hsiler
the hazard, chsiler
the cumulative hazard, ssiler
the survival, and nllsiler
the negative log-likelihood.
hsiler(x, a) chsiler(x, a, x0 = 0) ssiler(x, a, x0 = 0) dsiler(x, a, x0 = 0) psiler(x, a, x0 = 0) qsiler(qvect, a, x0 = 0) rsiler(N, a, x0 = 0) nllsiler(a, x, x0 = 0)
x | the ending point |
---|---|
a | parameterization vector |
x0 | the initial point |
qvect | vector of quantiles |
N | number of observations |
A numeric vector of length equal to the input
The Siler hazard is
$$\lambda(x) = a_1 \exp(-a_2 \, x) + a_3 + a_4 \exp(a_5 \, x)$$
where \(a_i\) (index notation) is the parameter vector. The cumulative hazard is found by integrating the hazard from some initial point \(x_0\) to \(x\),
$$\Lambda(x_0,x) = -\frac{a_1}{a_2} (e^{-a_2 x} - e^{-a_2 x_0}) + a_3 (x-x_0) + \frac{a_4}{a_5} (e^{a_5 x} - e^{a_5 x_0})$$.
If \(x_0\) (optional) is not input it is set equal to 0. The survival and cumulative density function are, respectively,
$$S(x_0,x) = \exp(-\Lambda(x_0,x)) = \frac{S(0,x)}{S(0,x_0)} = \frac{S(x)}{S(x_0)}$$
and
$$F(x_0,x) = 1 - S(x_0,x)$$.
The probability density function is
$$f(x_0,x) = \frac{d}{dx} F(x_0,x) = \lambda(x) S(x_0,x)$$.